Technical Report C/23170/T01

**Project** 

The Laboratory
Measurement of the
Sound Reduction
Index of Various
Windows

Prepared for

Smart Architectural

Aluminium

Published 7 October 2015





| Quality Assurance                                                                        |                                                       |  |
|------------------------------------------------------------------------------------------|-------------------------------------------------------|--|
| Project Title The Laboratory Measurement of the Sound Reduction Index of Various Windows |                                                       |  |
| Document Title Technical Report                                                          |                                                       |  |
| Client Smart Architectural Aluminium                                                     |                                                       |  |
| Client Address                                                                           | Arnolds Way,<br>Yatton,<br>North Somerset<br>BS49 4QN |  |
| <b>Author</b> George Thomson                                                             |                                                       |  |
| Checker Allen Smalls                                                                     |                                                       |  |
| Report Number C/23170/T01                                                                |                                                       |  |
| Published 07/10/2015                                                                     |                                                       |  |

**laboratory** 



## **Summary**

Tests have been done in SRL's Laboratory at Holbrook House, Sudbury, Suffolk, to determine the sound reduction index of various windows in accordance with BS EN ISO 10140-2:2010.

From these measurements the required results have been derived and are presented in both tabular and graphic form in Data Sheets 1 to 6.

The results are given in 1/3rd octave bands over the frequency range 50Hz to 10kHz, which is beyond that required by the test standard. Measurements outside the standard frequency range are not UKAS accredited.

**George Thomson** 

For and on behalf of

SRL Technical Services Limited

Tel: 01787 247595

Email: asmalls@srltsl.com

**Allen Smalls** 

**Quality Manager** 



## **Contents**

| Summ   | ary                              | 3  |
|--------|----------------------------------|----|
| 1.0    | Details of Measurements          | 5  |
| 2.0    | Description of Test              | 7  |
| 3.0    | Results                          | 9  |
| Data S | heets 1 - 6                      | 10 |
| Drawii | ng 11                            | 6  |
| Apper  | Appendix A – Test Procedure17    |    |
| Apper  | dix B – Measurement Uncertainty1 | 9  |

## 1.0 Details of Measurements

### 1.1 Location

Sound Research Laboratories

Holbrook House

Little Waldingfield

Sudbury

Suffolk

CO10 0TF

### 1.2 Test Dates

5 October 2015

### 1.3 Tester

Allen Smalls of SRL Technical Services Limited



## 1.4 Instrumentation and Apparatus Used

| Make                  | Description                                                                                        | Туре                                          |
|-----------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------|
| EDI                   | Microphone Multiplexer Microphone Power Supply Unit                                                |                                               |
| Norwegian Electronics | Real Time Analyser<br>Rotating Microphone Boom                                                     | 830<br>231                                    |
| Brüel & Kjaer         | 12mm Condenser Microphones Windshields Pre Amplifiers Microphone Calibrator Omnipower Sound Source | 4166<br>UA0237<br>2639, 2669C<br>4231<br>4296 |
| Larson Davis          | 12mm Condenser Microphone                                                                          | 2560                                          |
| Celestion             | Loudspeakers                                                                                       | 100w                                          |
| Douglas Curtis        | Rotating Microphone Boom                                                                           |                                               |
| Oregon Scientific     | Temperature & Humidity & Probe                                                                     | THGR810                                       |
| TOA                   | Graphic Equalizer                                                                                  | E-1231                                        |
| QSC Audio             | Power Amplifier                                                                                    | RMX 1450                                      |



#### 1.5 References

BS EN ISO 717-1:2013 Rating of sound insulation in buildings and of building

elements. Airborne Sound Insulation.

BS EN ISO 10140-2:2010 Laboratory measurement of sound insulation for building

element – Part 2: Measurement of airborne sound insulation.

## 2.0 Description of Test

## 2.1 Description of Sample

Two window frames were tested each with 3 types of glass. See Drawing 1 and Data Sheets for details.

Sampling plan: Enough for test only

Sample condition: New

Details supplied by: Smart Architectural Aluminium

Sample installed by: Smart Architectural Aluminium

## 2.2 Sample Delivery date

2 October 2015



### 2.3 Test Procedures

The sample was mounted/located and tested in accordance with the relevant standard. The method and procedure is described in Appendix A. The measurement uncertainty is given in Appendix B.



## 3.0 Results

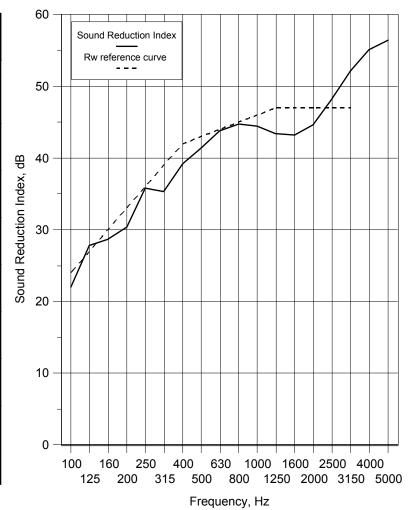
The results of the measurements and subsequent analysis are given in Data Sheets 1 to 6 and summarised below.

Results relate only to the items tested.

| SRL Test No. | Description in Brief                                                              | R <sub>w</sub> (C;C <sub>tr</sub> ) |
|--------------|-----------------------------------------------------------------------------------|-------------------------------------|
| 2            | Fixed frame Glass = 10mm clear, 16mm cavity, 8.8mm acoustic glass                 | 43 (-1;-6) dB                       |
| 3            | Fixed frame Glass = 12.8mm lam acoustic, 20mm cavity, 12.8mm lam acoustic glass   | 45 (-1;-5) dB                       |
| 4            | Fixed frame Glass = 6mm clear, 16mm cavity, 8.8mm acoustic glass                  | 41 (-2;-7) dB                       |
| 5            | Opening frame Glass = 10mm clear, 16mm cavity, 8.8mm acoustic glass               | 43 (-2;-6) dB                       |
| 6            | Opening frame Glass = 6mm clear, 16mm cavity, 8.8mm acoustic glass 41 (-3;-7)     |                                     |
| 7            | Opening frame Glass = 12.8mm lam acoustic, 20mm cavity, 12.8mm lam acoustic glass | 43 (-1;-4) dB                       |



Test Number: Test Room: Source Receiving Client: Smart Architectural Aluminium Air temperature: 15 °C 15.4 °C **Test Date:** 05/10/2015 Air humidity: 83 % 79 % Sample height: 1.5 m Volume: 55 m3 300 m3


Sample width: 1.25 m Sample weight: n/a kg/r

n/a kg/m2 Air Pressure: 998 mbar

**Product** Fixed frame

**Identification:** Glass = 10mm clear, 16mm cavity, 8.8mm acoustic glass

|          | Sound     |         |
|----------|-----------|---------|
| Freq     | Reduction |         |
| f        | Index, dB |         |
| Hz       | 1/3 Oct   | 1/1 Oct |
| 50+      | 28.8      |         |
| 63+      | 26.8      | 22.4    |
| 80+      | 18.6      |         |
| 100      | 22.0      |         |
| 125      | 27.8      | 25.1    |
| 160      | 28.7      |         |
| 200      | 30.4      |         |
| 250      | 35.8      | 33.1    |
| 315      | 35.3      |         |
| 400      | 39.2      |         |
| 500      | 41.4      | 41.1    |
| 630      | 43.8      |         |
| 800      | 44.7      |         |
| 1000     | 44.5      | 44.2    |
| 1250     | 43.4      |         |
| 1600     | 43.2      |         |
| 2000     | 44.6      | 44.9    |
| 2500     | 48.2      |         |
| 3150     | 52.2      |         |
| 4000     | 55.1      | 54.2    |
| 5000     | 56.4      |         |
| 6300+    | 55.4      |         |
| 8000+    | 55.6 *    | 54.1    |
| 10000+   | 52.2 *    |         |
| Average  |           | Version |
| 100-3150 | 39.1      | v2.1    |



Rating according to BS EN ISO 717-1:2013

\* shows measurement corrected for background

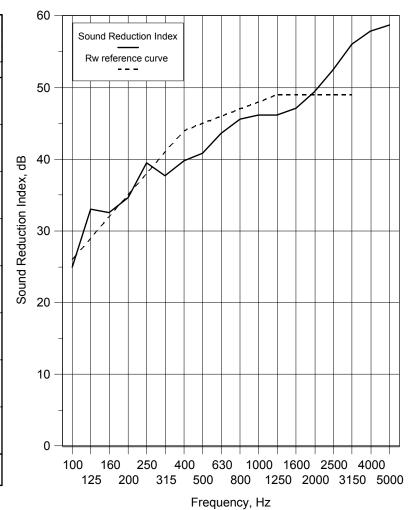
Rw(C;Ctr) = 43 (-1;-6) dB

+ shows frequency beyond standard and not UKAS accredited

Page 10 of 20



Test Number : Test Room: Source Receiving 15.4 °C Client: Smart Architectural Aluminium Air temperature: 15 °C **Test Date:** 05/10/2015 Air humidity: 83 % 79 % Sample height: 1.5 m Volume: 55 m3 300 m3


Sample width: 1.25 m

Sample weight: n/a kg/m2 Air Pressure: 998 mbar

**Product** Fixed frame

Identification: Glass = 12.8mm lam acoustic, 20mm cavity, 12.8mm lam acoustic glass

|          | Sound     |         |
|----------|-----------|---------|
| Freq     | Reduction |         |
| f        | Index, dB |         |
| Hz       | 1/3 Oct   | 1/1 Oct |
| 50+      | 29.9      |         |
| 63+      | 27.5      | 20.7    |
| 80+      | 16.4      |         |
| 100      | 25.0      |         |
| 125      | 33.0      | 28.5    |
| 160      | 32.6      |         |
| 200      | 34.7      |         |
| 250      | 39.5      | 36.8    |
| 315      | 37.7      |         |
| 400      | 39.8      |         |
| 500      | 40.8      | 41.1    |
| 630      | 43.6      |         |
| 800      | 45.6      |         |
| 1000     | 46.2      | 46.0    |
| 1250     | 46.2      | •       |
| 1600     | 47.1      |         |
| 2000     | 49.4      | 49.1    |
| 2500     | 52.4      | •       |
| 3150     | 56.1      |         |
| 4000     | 57.9      | 57.4    |
| 5000     | 58.7      |         |
| 6300+    | 58.3      |         |
| 8000+    | 58.0 *    | 55.6    |
| 10000+   | 52.9 *    |         |
| Average  |           | Version |
| 100-3150 | 41.9      | v2.1    |
|          |           |         |



Rating according to BS EN ISO 717-1:2013

\* shows measurement corrected for background

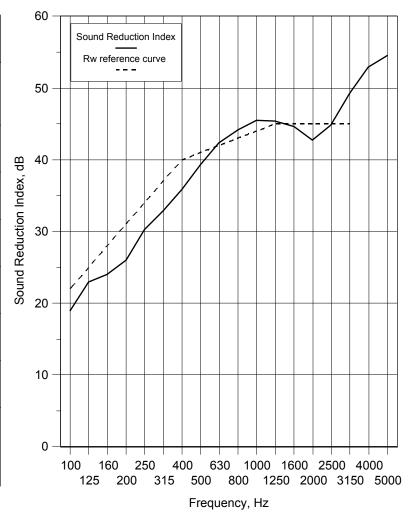
Rw(C;Ctr) = 45 (-1;-5) dB

+ shows frequency beyond standard and not UKAS accredited

07/10/2015 Page 11 of 20

### Data Sheet 3

Test Number: Test Room: Source Receiving Client: Smart Architectural Aluminium 15 °C 15.4 °C Air temperature: 05/10/2015 83 % 80 % Test Date: Air humidity: Sample height: 1.5 m Volume: 55 m3 300 m3


Sample width: 1.25 m

Sample weight: n/a kg/m2 Air Pressure: 998 mbar

Product Fixed frame

**Identification:** Glass = 6mm clear, 16mm cavity, 8.8mm acoustic glass

|          | Sound     |         |
|----------|-----------|---------|
| Freq     | Reduction |         |
| f        | Index, dB |         |
| Hz       | 1/3 Oct   | 1/1 Oct |
| 50+      | 26.1      |         |
| 63+      | 24.7      | 22.3    |
| 80+      | 19.3      |         |
| 100      | 19.0      |         |
| 125      | 23.0      | 21.4    |
| 160      | 24.0      |         |
| 200      | 26.0      |         |
| 250      | 30.3      | 28.8    |
| 315      | 32.9      |         |
| 400      | 35.9      |         |
| 500      | 39.3      | 38.4    |
| 630      | 42.4      | •       |
| 800      | 44.2      |         |
| 1000     | 45.5      | 45.0    |
| 1250     | 45.4      | •       |
| 1600     | 44.6      |         |
| 2000     | 42.7      | 43.9    |
| 2500     | 44.8      | •       |
| 3150     | 49.3      |         |
| 4000     | 52.9      | 51.7    |
| 5000     | 54.5      |         |
| 6300+    | 55.4      |         |
| 8000+    | 55.9 *    | 54.2    |
| 10000+   | 52.3 *    | •       |
| Average  |           | Version |
| 100-3150 | 36.8      | v2.1    |



Rating according to BS EN ISO 717-1:2013

\* shows measurement corrected for background

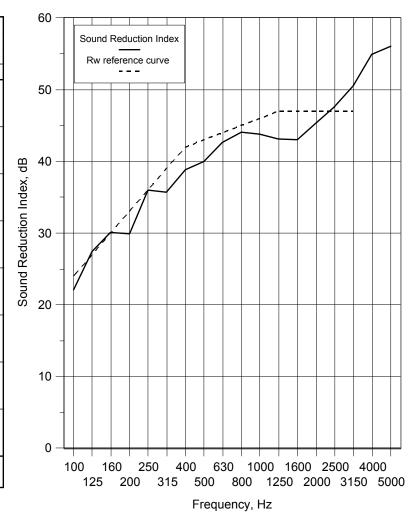
Rw(C;Ctr)= 41 (-2;-7) dB

+ shows frequency beyond standard and not UKAS accredited

Page 12 of 20



Test Number: Test Room: Source Receiving Smart Architectural Aluminium 15.1 °C 15.5 °C Client: Air temperature: 87 % Test Date: 05/10/2015 Air humidity: 82 % 300 m3 1.5 m Volume: 55 m3 Sample height:


Sample width: 1.25 m

Sample weight: n/a kg/m2 Air Pressure: 998 mbar

**Product** Opening frame

**Identification:** Glass = 10mm clear, 16mm cavity, 8.8mm acoustic glass

|          | Sound     |         |
|----------|-----------|---------|
| Freq     | Reduction |         |
| f        | Index, dB |         |
| Hz       | 1/3 Oct   | 1/1 Oct |
| 50+      | 28.8      |         |
| 63+      | 26.5      | 23.3    |
| 80+      | 19.8      |         |
| 100      | 22.1      |         |
| 125      | 27.4      | 25.2    |
| 160      | 30.1      |         |
| 200      | 29.9      |         |
| 250      | 36.0      | 32.9    |
| 315      | 35.7      |         |
| 400      | 38.8      |         |
| 500      | 40.0      | 40.2    |
| 630      | 42.6      |         |
| 800      | 44.1      |         |
| 1000     | 43.8      | 43.7    |
| 1250     | 43.1      |         |
| 1600     | 43.0      |         |
| 2000     | 45.3      | 44.9    |
| 2500     | 47.6      |         |
| 3150     | 50.5      |         |
| 4000     | 54.9      | 53.1    |
| 5000     | 56.1      |         |
| 6300+    | 54.4      |         |
| 8000+    | 54.9      | 54.2    |
| 10000+   | 53.5 *    |         |
| Average  |           | Version |
| 100-3150 | 38.8      | v2.1    |
|          |           |         |



Rating according to BS EN ISO 717-1:2013

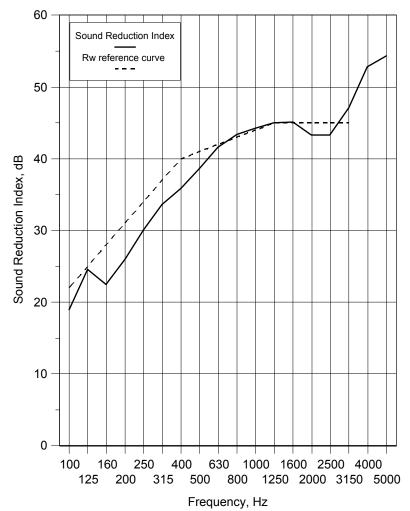
\* shows measurement corrected for background

Rw(C;Ctr) = 43 (-2;-6) dB

+ shows frequency beyond standard and not UKAS accredited

### Data Sheet 5

Test Number: Test Room: Source Receiving Client: Smart Architectural Aluminium 15.1 °C 15.5 °C Air temperature: 87 % 05/10/2015 83 % **Test Date:** Air humidity: Sample height: 1.5 m Volume: 55 m3 300 m3


Sample width: 1.25 m

Sample weight: n/a kg/m2 Air Pressure: 998 mbar

**Product** Opening frame

**Identification:** Glass = 6mm clear, 16mm cavity, 8.8mm acoustic glass

|          | Sound     |         |
|----------|-----------|---------|
| Freq     | Reduction |         |
| f        | Index, dB |         |
| Hz       | 1/3 Oct   | 1/1 Oct |
| 50+      | 23.4      |         |
| 63+      | 25.0      | 22.1    |
| 80+      | 19.7      |         |
| 100      | 19.0      |         |
| 125      | 24.6      | 21.4    |
| 160      | 22.5      |         |
| 200      | 26.0      |         |
| 250      | 30.1      | 28.8    |
| 315      | 33.6      |         |
| 400      | 35.9      |         |
| 500      | 38.7      | 38.1    |
| 630      | 41.6      |         |
| 800      | 43.4      |         |
| 1000     | 44.3      | 44.2    |
| 1250     | 45.0      |         |
| 1600     | 45.1      |         |
| 2000     | 43.3      | 43.8    |
| 2500     | 43.3      |         |
| 3150     | 47.1      |         |
| 4000     | 52.8      | 50.2    |
| 5000     | 54.3      |         |
| 6300+    | 53.2      |         |
| 8000+    | 54.5      | 52.3    |
| 10000+   | 50.3 *    |         |
| Average  |           | Version |
| 100-3150 | 36.5      | v2.1    |



Rating according to BS EN ISO 717-1:2013

\* shows measurement corrected for background

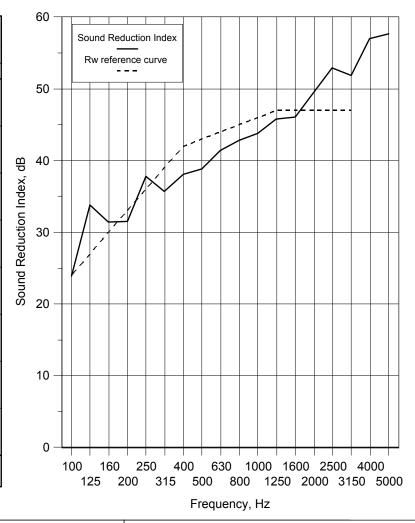
Rw(C;Ctr) = 41 (-3;-7) dB

+ shows frequency beyond standard and not UKAS accredited

07/10/2015 Page 14 of 20



Test Number: 7 Test Room: Receiving Source Client: Smart Architectural Aluminium 15.1 °C 15.5 °C Air temperature: 83 % **Test Date:** 05/10/2015 Air humidity: 86 % Sample height: 1.5 m Volume: 55 m3 300 m3


Sample width: 1.25 m
Sample weight: n/a kg/m

Sample weight: n/a kg/m2 Air Pressure: 997 mbar

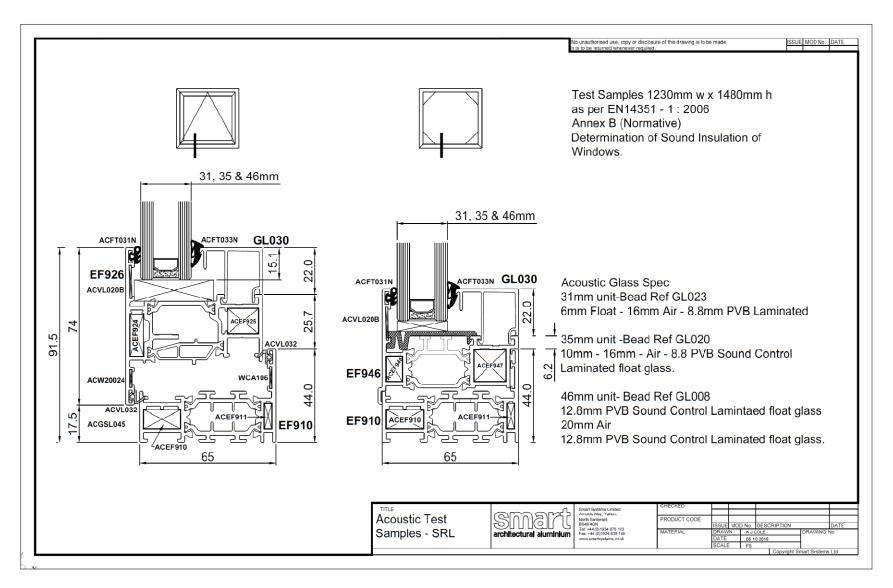
**Product** Opening frame

Identification: Glass = 12.8mm lam acoustic, 20mm cavity, 12.8mm lam acoustic glass

|          | Sound     |         |
|----------|-----------|---------|
| Freq     | Reduction |         |
| f        | Index, dB |         |
| Hz       | 1/3 Oct   | 1/1 Oct |
| 50+      | 30.1      |         |
| 63+      | 27.7      | 21.2    |
| 80+      | 17.0      |         |
| 100      | 23.9      |         |
| 125      | 33.8      | 27.6    |
| 160      | 31.4      |         |
| 200      | 31.5      |         |
| 250      | 37.8      | 34.2    |
| 315      | 35.7      |         |
| 400      | 38.1      |         |
| 500      | 38.8      | 39.2    |
| 630      | 41.4      |         |
| 800      | 42.8      |         |
| 1000     | 43.8      | 43.9    |
| 1250     | 45.8      |         |
| 1600     | 46.1      |         |
| 2000     | 49.5      | 48.6    |
| 2500     | 52.9      |         |
| 3150     | 51.9      |         |
| 4000     | 57.0      | 54.7    |
| 5000     | 57.7      |         |
| 6300+    | 57.7      |         |
| 8000+    | 56.5 *    | 53.7    |
| 10000+   | 50.5 *    |         |
| Average  |           | Version |
| 100-3150 | 40.3      | v2.1    |



Rating according to BS EN ISO 717-1:2013


\* shows measurement corrected for background

Rw(C;Ctr) = 43 (-1;-4) dB

+ shows frequency beyond standard and not UKAS accredited

07/10/2015 Page 15 of 20

# **SRL** Drawing 1





## Appendix A - Test Procedure

#### Measurement of Sound Transmission in accordance with

BS EN ISO 10140-2: 2010 - TP33

In the laboratory, airborne sound transmission is determined from the difference in sound pressure levels measured across a test sample installed between two reverberant rooms. The difference in measured sound pressure levels is corrected for the amount of absorption in the receiving room. The test is done under conditions which restrict the transmission of sound by paths other than directly through the sample. The source sound field is randomly incident on the sample.

The test sample is located and sealed in an aperture within the brick dividing wall between the two rectangular reverberant (i.e. acoustically "live") room, both of which are constructed from 215mm brick with reinforced concrete floors and roofs. The brick wall has dimensions of 4.8m wide x 3.1m high and 550mm nominal thickness and forms the whole of the common area between the two rooms.

One of the rooms is used as the receiving room and has a volume of 300 cubic metres. It is isolated from the surrounding structure and the adjoining room by the use of resilient mountings and seals ensuring good acoustic isolation. The adjoining source room has a volume of 55 cubic metres.

Broad band noise is produced in the source room from an electronic generator, power amplifier and loudspeaker. The resulting sound pressure levels in both rooms are sampled using a microphone mounted on an oscillating boom and connected to a real time analyser. The signal is filtered into one third octave band widths, integrated and averaged. The value obtained at each frequency is known as the average sound pressure level for either the source or the receiving room. The change in level across the test sample is termed the sound pressure level difference, i.e.

$$D = L_1 - L_2$$

where

D is the equivalent Sound Pressure level difference in dB

- L<sub>1</sub> is the equivalent Sound Pressure level in the source room in dB
- L<sub>2</sub> is the equivalent Sound Pressure level in the receiving room in dB

The Sound Reduction Index (R), also known by the American terminology Sound Transmission Loss, is defined as the number of decibels by which sound energy randomly incident on the test sample is reduced in transmitting through it and is given by the formula:

$$R = D + 10log_{10} \frac{s}{A}.....$$
 in decibels

Where

- S is the area of the sample
- A is the total absorption in the receiving room

both dimensions being in consistent units

The Sound Reduction Index is an expression of the laboratory sound transmission performance of a particular element or construction. It is a function of the mass, thickness, sealing, method of mounting etc. and is independent of the overall area of the sample.

However, when an example of this construction is installed on site, the sound insulation obtained will depend upon its surface area, as well as the absorption in the receiving room. The larger the area the greater the sound energy transmitted. Also, the overall sound insulation is affected by the sound transmission through other building elements, some of which may have an inferior performance to the sample tested. In practice, therefore, the potential sound reduction index of a construction is not fully realised on site. Furthermore, the sound reduction index of a particular sample of that construction can only be measured accurately in a laboratory, because only under such controlled conditions can the sound transmission path be limited to the sample under test.

 $R_{wr}$  C and  $C_{tr}$  have been calculated in accordance with the relevant section of BS EN ISO 717-1:1997 from the results of laboratory tests carried out in accordance with BS EN ISO 10140-2:2010.



# **Appendix B – Measurement Uncertainty**

### BS EN ISO 10140-2: 2010 - TP33

The following values of uncertainty are based on a standard uncertainty multiplied by a coverage factor of k = 2, which provides a level of confidence of approximately 95%.

| Frequency, Hz | Uncertainty, ± dB |
|---------------|-------------------|
| 100           | 3.2               |
| 125           | 2.9               |
| 160           | 2.5               |
| 200           | 2.5               |
| 250           | 1.8               |
| 315           | 1.8               |
| 400           | 1.5               |
| 500           | 1.5               |
| 630           | 1.2               |
| 800           | 1.2               |
| 1000          | 1.2               |
| 1250          | 1.2               |
| 1600          | 1.2               |
| 2000          | 1.2               |
| 2500          | 1.2               |
| 3150          | 1.2               |



#### **Southern Office & Laboratory**

Holbrook House Little Waldingfield

Sudbury Suffolk CO10 0TF

Tel: +44 (0)1787 247595

#### **Birmingham Office**

Cornwall Buildings 45 Newhall Street

Birmingham B3 3QR

Tel: +44 (0)121 213 6342

Website: <a href="https://www.srltsl.com">www.srltsl.com</a>
e-mail: <a href="mailto:srl@srltsl.com">srl@srltsl.com</a>

#### SRL offers services in:

Acoustics

Laboratory and Site Testing

Fire

**BREEAM** 

Air Tightness

Air Quality

## **Registered Name and Address:**

SRL Technical Services Limited Holbrook House

Little Waldingfield

Sudbury

Suffolk

CO10 0TF

Registered Number: 907694 England

#### **Northern Office**

Lynnfield House Church Street Altrincham Cheshire WA14 4DZ

Tel: +44 (0)161 929 5585

#### **South Africa Office**

Ground Floor, Liesbeek House

**River Park** 

Gloucester Road

Mowbray

7700

South Africa

Tel: +27 (0)21 680 5305

#### **London Office**

70 Cowcross Street

London EC1M 6EJ

Tel: +44 (0)207 251 3585

